Физики выявили самую реалистичную модель ударного разрушения астероида. Для этого они перебрали много возможных вариантов и сравнили их с реальным экспериментом, имитировавшим сбитие метеорита. В результате выяснилось, что современная наука действительно может достаточно точно моделировать такие события. Статья опубликована в журнале Earth and Space Science.
Падение на Землю крупного астероида — событие крайне маловероятное. Тем не менее, несмотря на исчезающе маленькие шансы, урон от него может быть огромен. Так, знаменитый Тунгусский взрыв был эквивалентен водородной бомбе, и лишь по счастливой случайности он упал вдали от населенных пунктов. Для проработки возможной в будущем защиты от таких угроз проводятся научные исследования. Так, NASA планирует миссию DART — это попытка отклонить астероид, протаранив его зондом. Но, для того, чтобы эти эксперименты имели смысл, необходимо уметь достаточно точно рассчитывать такие столкновения.
Тэйн Ремингтон (Tane Remington) из Ливерморской национальной лаборатории и ее коллеги решили проверить, какая из современных моделей деформации твердого тела лучше всего подходит для расчета столкновения с астероидом. Естественный способ проверки модели — сравнение с реальностью. Поскольку эксперимент с настоящим астероидом еще только планируется, исследователи решили обратиться к испытаниям 1991 года, в ходе которых японские ученые сняли на высокоскоростную камеру выстрел по круглому шестисантиметровому куску базальта, имитирующему астероид, пластиковой пулей, летящей со скоростью 3,2 километра в секунду.
Примечательно, что при контакте с противоположной стороны камня образовывался характерный откол (spall), и что, не мотря на огромную энергию соударения, не весь базальт рассыпался на мелкие осколки: сохранилась крупная сердцевина камня. Это дало исследователям эффективный способ оценки тестируемых моделей, так как в первую очередь они проверяли, дают ли расчеты неповрежденное ядро и откол сзади.
Применяемые физиками компьютерные модели твердого тела дискретны: объекты в них не непрерывные, а разбиты на небольшие трехмерные фрагменты. Чем больше в модели фрагментов, тем точнее расчет, но и выше вычислительная сложность. Поэтому, первым шагом ученых стало определение необходимого количества «пикселей». Для этого они начали моделирование столкновения с заведомо низкой детализацией, и постепенно ее увеличивали, при этом рос получаемый виртуальным астероидом урон. Число фрагментов увеличивали до тех пор, пока рост урона не вышел на плато, то есть пока увеличение детализации не перестало приносить пользу. В итоге виртуальный астероид состояил из почти двух миллионов фрагментов при диаметре в 150 фрагментов.
Следующей проблемой был выбор принципа расчета механического напряжения базальта, для чего исследователи рассмотрели две актуальные модели: деформационную модель Бенца-Асфога (Benz-Asphaug) и псевдопластическую модель деформации. Только первая модель давала наблюдаемую в живом эксперименте целую сердцевину и скол на обратной стороне. В ней урон будто бы огибал центр, в то время как в псевдопластической модели разрушения проходили сквозь все тело.
Два оставшихся ключевых элемента для расчетов — прочность материала и параметр распределения Вейбулла для дефектов в твердых хрупких материалах — подобрали перебором, стараясь получить виртуальные осколки, похожие на реальные. Итоговая модель весьма точно воспроизводит эксперимент 1991 года и авторы рассчитывают, что ее можно будет применить в запланированных экспериментах по отклонению орбиты астероида.
По информации https://nplus1.ru/news/2020/03/31/asteroid-impact-models