Новости науки "Русского переплета"
TopList Яндекс цитирования
Русский переплет
Портал | Содержание | О нас | Авторам | Новости | Первая десятка | Дискуссионный клуб | Чат Научный форум
-->
Первая десятка "Русского переплета"
Темы дня:

Президенту Путину о создании Института Истории Русского Народа. |Нас посетило 40 млн. человек | Чем занимались русские 4000 лет назад?

| Кому давать гранты или сколько в России молодых ученых?
Rambler's Top100
Rambler's Top100
Портал | Содержание | О нас | Пишите | Новости | Книжная лавка | Голосование | Топ-лист | Регистрация | Дискуссия
Лучшие молодые
ученые России

Подписаться на новости

АВТОРСКИЕ НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах" | "Terra & Comp" (Геология и компьютеры) | "Неизбежность странного микромира"| "Научно-популярное ревю"| "Биология и жизнь" | Теорфизика для малышей
Семинары - Конференции - Симпозиумы - Конкурсы

НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"
Проект поддержан Международной Соросовской Программой образования в области точных наук.
Новости из мира науки и техники
The Best of Russian Science and Technology
Страницу курирует проф. В.М.Липунов
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

21.12.2017
17:21

Сверхпроводник из углеродных нанотрубок

    Российские ученые впервые установили температуру, при которой одностенные углеродные нанотрубки становятся сверхпроводниками. Им также удалось найти способ сделать эту температуру выше. Это открывает новые перспективы применения сверхпроводящих материалов. Работа исследователей из Уральского федерального университета (УрФУ) и МГУ имени М. В. Ломоносова опубликована в научном журнале Carbon, сообщает информационный портал «Индикатор».

    Сверхпроводимость — это квантовое свойство некоторых веществ пропускать ток с пренебрежимо малыми потерями. Материалы с этой способностью используются в циклотронах, поездах на магнитной подушке, линиях электропередачи, сверхчувствительных магнитометрах. Однако основная проблема сверхпроводимости состоит в том, что она проявляется в материалах при температуре, которая лишь немного выше абсолютного нуля (−273 °C). Сверхпроводимость в условиях ближе к −200 °C уже считается достижением.

    Способность углерода образовывать плоские листы толщиной в один атом давно привлекает внимание ученых. Если представить, что такой однослойный лист скручен в трубочку, мы получим новую интересную структуру — одностенную углеродную нанотрубку (ОУНТ). Такие образования очень прочны на разрыв, необычным образом преломляют свет и могут использоваться во множестве областей — от электроники до биомедицины. Электрическая проводимость нанотрубки может зависеть от ориентации составляющих ее шестиугольников из атомов углерода, вещества внутри трубки, дополнительных атомов других элементов, вставленных в ее структуру или присоединенных снаружи.

    Одностенные углеродные нанотрубки активно изучаются как перспективные сверхпроводники. Их диаметр составляет всего четыре ангстрема, то есть они близки к одномерным материалам. При температурах вблизи абсолютного нуля в таких нанотрубках образуются пары электронов, называемые куперовскими, — основа механизма сверхпроводимости. Однако тонкие одномерные структуры препятствуют прохождению куперовских пар, и сверхпроводимости не наблюдается.

    «Нами была поставлена задача изменить одномерную структуру с целью повышения температуры сверхпроводящего перехода, — комментирует Анатолий Зацепин, руководитель научно-исследовательской лаборатории Физико-технологического института УрФУ. — Оказалось, что если укладывать ОУНТ в стопки, то куперовские пары стабилизируются и можно получить сверхпроводник». Однако сверхпроводимость даже у таких стопок возникает при достаточно низкой температуре — всего на 15 градусов выше абсолютного нуля.

    Физики нашли решение этой проблемы. Они добавили внутрь одностенных углеродных нанотрубок «провод» из цепочки атомов углерода толщиной всего в один атом. Эта цепочка сама по себе не образовывает связей с атомами в составе трубки, но при этом трубка меняет геометрию, сжимаясь и изгибаясь.

    Когда ученые УрФУ изменили форму внутренней углеродной цепочки с прямой на зигзагообразную, им удалось поднять температуру перехода в состояние сверхпроводимости на 45 °C. Чтобы добиться наилучшего эффекта, углы этих зигзагов рассчитали математически, и эти предсказания оказались верными.

    «Никто в мире не мог успешно рассчитать температуру сверхпроводимости одностенной углеродной нанотрубки с 2001 года, — поясняет Чи Хо Вонг, постдок УрФУ, соавтор работы. — Но нам это удалось сделать. Мы вставили углеродную цепочку внутрь нанотрубки, чтобы понять, как это влияет на сверхпроводимость»

    По информации https://stimul.online/news/sverkhprovodnik-iz-uglerodnykh-nanotrubok/

    Обозрение "Terra & Comp".

Помощь корреспонденту
Кнопка куратора
Добавить новость
Добавить новости
НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"

Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Rambler's Top100


Rambler's Top100