Новости науки "Русского переплета"
TopList Яндекс цитирования
Русский переплет
Портал | Содержание | О нас | Авторам | Новости | Первая десятка | Дискуссионный клуб | Чат Научный форум
-->
Первая десятка "Русского переплета"
Темы дня:

Президенту Путину о создании Института Истории Русского Народа. |Нас посетило 40 млн. человек | Чем занимались русские 4000 лет назад?

| Кому давать гранты или сколько в России молодых ученых?
Rambler's Top100
Rambler's Top100
Портал | Содержание | О нас | Пишите | Новости | Книжная лавка | Голосование | Топ-лист | Регистрация | Дискуссия
Лучшие молодые
ученые России

Подписаться на новости

АВТОРСКИЕ НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах" | "Terra & Comp" (Геология и компьютеры) | "Неизбежность странного микромира"| "Научно-популярное ревю"| "Биология и жизнь" | Теорфизика для малышей
Семинары - Конференции - Симпозиумы - Конкурсы

НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"
Проект поддержан Международной Соросовской Программой образования в области точных наук.
Новости из мира науки и техники
The Best of Russian Science and Technology
Страницу курирует проф. В.М.Липунов
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

24.11.2017
19:43

Атомный газ обменялся с кристаллом квантовыми состояниями

    Испанские ученые впервые передали с помощью фотонов квантовые состояния между облаком холодных атомов рубидия-87 и кристаллом Pr3+:Y2SiO5. Статья опубликована в Nature.

    Чтобы построить квантовую сеть, необходимо не только сохранять квантовые состояния в течение долгого времени, но и передавать их между узлами сети. Удобнее всего использовать для этого фотоны, поскольку их легко передать на большие расстояния. К тому же для этого можно использовать широко распространенные оптоволоконные сети. На данный момент ученым уже удалось передать состояния между атомными ансамблями, одиночными атомами, пойманными в ловушку, или квантовыми кристаллами.

    Каждый из способов, использованных для сохранения квантовых состояний в этих экспериментах, имеет свои достоинства и недостатки. В то же время, в сложной квантовой системе хотелось бы использовать преимущества различных подходов. Ученые уже пытались построить гибридную сеть, например, связывая холодные облака ионов 9Be+ и 25Mg+. Однако во всех предыдущих экспериментах квантовые состояния передавались с помощью электрического взаимодействия или микроволновых фотонов, и расстояние передачи было сильно ограниченно. На этот раз физики связали квантовые системы принципиально различной природы с помощью фотонов, частота которых лежит в телекоммуникационном диапазоне (то есть наиболее удобна для оптоволоконной связи).

    Экспериментальная установка разделялась на две части, соединенных десятиметровым оптическим кабелем. В одной ее части ученые удерживали в магнитооптической ловушке облако холодных ионов 87Rb. Время от времени исследователи светили на это облако лазером, и в результате в нем возникали спиновые волны, отвечающие некоторому долгоживущему квантовому состоянию. Спустя некоторое время облако излучало скоррелированные одиночные фотоны. Эти фотоны физики разделяли на два потока, один из которых регистрировали с помощью детектора D1, а другой направляли в специальное устройство (quantum frequency conversion device), которое изменяло длину волны частиц с 780 до 1552 нанометров. Затем фотоны направлялись в оптоволоконный кабель и попадали в другую часть установки, расположенную в соседней лаборатории.

    Здесь фотоны снова меняли длину волны с 1552 до 606 нанометров и направлялись на кристалл ортосиликата иттрия Y2SiO5, легированный ионами Pr3+ и охлажденный до температуры 3,5 Кельвинов. Для записи и хранения состояний в кристалле ученые использовали атомную частотную гребенку. Этот принцип использует световые волны, спектр которых имеет ярко выраженные линии поглощения, отстоящие друг от друга на равное расстояние (поэтому спектр напоминает гребенку, расческу). В данном случае ширина гребенки составила 400 мегагерц, а расстояние между зубьями – 400 килогерц (что отвечает линиям поглощения Pr3+). В результате фотоны сохранялись в такой системе в течение 2,5 микросекунд, а затем заново излучались. Наконец, полученные фотоны физики регистрировали с помощью детектора D2.

    Затем ученые проверили, связаны или нет фотоны, пойманные детекторами D1 и D2. Для этого они рассчитали функцию их взаимной корреляции для различных вероятностей возбуждения фотонов. Оказалось, что при вероятности около пяти процентов скоррелированность фотонов составила примерно gw,r(2) = 11,4 ± 2,4, что указывало на сохранение квантового состояния при передаче. При увеличении вероятности скоррелированность быстро падала до классического предела gw,r(2) = 2. Так или иначе, этот эксперимент показал, что квантовые состояния между кубитами разной природы передать можно.

    Ранее физики уже получали запутанные фотоны с длинами волн, лежащими в телекоммуникационном диапазоне, лучше всего подходящим для передачи по существующим каналам связи. Также мы писали о том, как физики из Российского Квантового Центра построили и улучшили сеть для квантовых коммуникаций, работающую в городских условиях.

    По информации https://nplus1.ru/news/2017/11/23/quantumtransfer

    Обозрение "Terra & Comp".

Помощь корреспонденту
Кнопка куратора
Добавить новость
Добавить новости
НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"

Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Rambler's Top100


Rambler's Top100